Point group symmetry -------------------- Forte takes advantage of symmetry, so it important to specify both the symmetry of the target electronic state and the orbital spaces that define a computation (see below). Forte supports only Abelian groups (:math:`C_1`, :math:`C_s`, :math:`C_i`, :math:`C_2`, :math:`C_{2h}`, :math:`C_{2v}`, :math:`D_2`, :math:`D_{2h}`). If a molecule has non-Abelian point group symmetry, the largest Abelian subgroup will be used. For a given group, the irreducible representations (irrep) are arranged according to Cotton’s book (*Chemical Applications of Group Theory*). This ordering is reproduced in the following table and is the same as used in Psi4: .. list-table:: :widths: 10 10 10 10 10 10 10 10 10 :header-rows: 1 * - Point group - Irrep 0 - Irrep 1 - Irrep 2 - Irrep 3 - Irrep 4 - Irrep 5 - Irrep 6 - Irrep 7 * - :math:`C_1` - :math:`A` - - - - - - - * - :math:`C_s` - :math:`A'` - :math:`A''` - - - - - - * - :math:`C_i` - :math:`A_{g}` - :math:`A_{u}` - - - - - - * - :math:`C_2` - :math:`A` - :math:`B` - - - - - - * - :math:`C_{2h}` - :math:`A_{g}` - :math:`B_{g}` - :math:`A_{u}` - :math:`B_{u}` - - - - * - :math:`C_{2v}` - :math:`A_{1}` - :math:`B_{1}` - :math:`A_{2}` - :math:`B_{2}` - - - - * - :math:`D_2` - :math:`A` - :math:`B_{1}` - :math:`B_{2}` - :math:`B_{3}` - - - - * - :math:`D_{2h}` - :math:`A_{g}` - :math:`B_{1g}` - :math:`B_{2g}` - :math:`B_{3g}` - :math:`A_{u}` - :math:`B_{1u}` - :math:`B_{2u}` - :math:`B_{3u}` By default, Forte targets a total symmetric state (e.g., :math:`A_1`, :math:`A_{g}`, …). To specify a state with a different irreducible representation (irrep), provide the ``ROOT_SYM`` option. This option takes an integer argument that indicates the irrep in Cotton’s ordering.